LOWER COLUMBIA RIVER AND ESTUARY RESEARCH NEEDS IDENTIFICATION WORKSHOP

FLIPCHART NOTES - BREAKOUT SESSION 2

STRENGTHS OF THE KNOWLEDGE BASE

- Approaching work from an ecosystem perspective, and with an eye to big driver (e.g., climate change)
- Preliminary conceptual model
 - Fish predation questions
- Attempts to link physics and biology
 - Efforts underway

WEAKNESSES OF THE KNOWLEDGE BASE

- Tidally influenced area between Bonneville and the estuary
- Role of invasive species
- Knowledge of primary productivity
- "Adult" habitats, etc.
- Role of low-level contaminants and emerging contaminants
- Existing geomorphology
- Microbial ecology to understand links
- Don't know how to describe what we are measuring

KEY UNCERTAINTIES IN THE KNOWLEDGE BASE

- How are actions now going to impact the future?
 - Consequences
 - Sustainability
- Evaluation capacity
 - How do we process information?
 - Who makes the decisions?
- Endpoint not clearly defined
 - Needed for clarity and to identify gaps, strengths, weaknesses, etc.
- How dynamic does the system have to be in order to be healthy? (How far do we need to go?)
- Lack of baseline information on where the system was pre-disturbance
- Quality and quantity of sediment load as it relates to restoration potential

QUESTION 1: WHAT RESEARCH WOULD IMPROVE UNDERSTANDING OF HOW VARIOUS SALMON LIFE-HISTORY STRATEGIES FUNCTION IN THE ESTUARY?

- Understanding of anthropogenic factors
- Hammond database (data recovery)*

- Need to mine the data
- Catch data from many sites throughout estuary/shore: 64-74, 77-84
- Limitations on techniques to identify what stock, ESU fish from
 - Need more information than just hatchery vs. wild differentiation)
- Look to other reports' recommendations
- Focus on estuary but need to recognize that fish come from all over system
 - Focus on ESUs

QUESTION 2: WHAT RESEARCH WOULD SUBSTANTIALLY CONTRIBUTE TO DEVELOPMENT AND APPLICATION OF AN ECOSYSTEM-BASED APPROACH TO SALMON HABITAT RESTORATION?

- Function of wetlands as:*
 - Filter for contaminants
 - Habitat for species
 - Nutrient supply source
 - Sediment trapping
 - Accretion rates
- Contaminant history
- Competition between hatchery and wild salmon
- Potential competition with American Chad*
- Inventories of where fish are distributed across the estuary
 - Concern with only going to inventory
- Food limitation data
- In-lab experiments getting at mechanisms by which habitat affects fish performance
- What would it take to get system back to "macrodetritus"?
- How much do the yearlings use the estuary?
- Pit tagging technology enhancements
- Genetics information
- Ecosystem focus
 - e.g. contaminants, yes for impacts on fish, but think more broadly
- Resolve conceptual models
 - Research to identify any weaknesses in the conceptual model
- Research aimed at creating a long-term database to determine temporal and spatial variability in primary and secondary production (as it relates to salmonids)*
- Estuarine turbidity maximum*
 - Where is it located?
 - Movement?
 - Macrodetrital/micro?
 - Corps workshop?*
- In considering conceptual frameworks derive into decision making tool
 - Adaptive management (are you meeting goal or not? Why?)
- Detailed bathymetric survey

- Flow
 - What are the constraints?
 - Can they be manipulated differently?
- Dredging
 - How can we use the sand?
 - Variety of options
- Conceptual model?
 - Given what you know, how close are we to broad buy-in to one CM?
 - How much effort would it take to get there?
 - Social exercise to agree on format
- Assessment of potential sediment loading resulting from land recovery/reclaim efforts
 - linkage with hydrodynamic model to see where sediments may be depositing
- Summary of all other recommendations (SARE, etc) or the workshop CD
- Long-term benthic and plankton sampling program
- Good measures of fish health and fitness
 - Continued support of existing efforts
- When looking at food web not just what fish eat but what eat fish (birds, mammals)
- Contaminants levels of concern for fish

QUESTION 3: WHAT ARE THE MOST IMPORTANT RESEARCH NEEDS?

Note that the *'s above (in questions 1 and 2) indicate additional priority areas

- Data mining
- Monitoring of on-going/new restoration
 - Or an overview of what others should be focusing on
 - How do you measure success?
- Integration of efforts (non-federal and federal) to restore estuarine processes
 - LCREP
 - Share information
- Links between physics and biology
 - Database of observed/simulations data
 - Access to everyone
 - Physical habitat opportunity
- Wetlands studies/functions
 - (Predictive modeling)
 - Restoration
- Monitoring not just create a protocol but have to implement, get results
- Maintain PIT tagging technology in the estuary
 - Variety of sources (ESU's)
- Adults role in the plume or estuary
- Create/continue improving tracking technology
 - Survival estimation
- Salmonid life-history use in the estuary
- Integrative projects should be major criteria for research

- Regional Mapping
 - Fish habitat, channels (accessibility)
 - Vegetation surveys (elevations of plants)
 - Available acreage
 - Substrate
 - Bathymetry
 - Primary productivity (remote sensing)
 - Topography
 - Accessibility (10,000 acres)
- Take advantage of ongoing efforts (especially tidal wetlands)
 - What do we need to know to make sure they will be successful?
 - How the system works -> very applied
- Criteria for habitat selection and prioritization
- Information necessary to measure success
- Have to maximize probability of success
 - Will lead to more money

QUESTION 4: WHAT ARE THE MAIN CONSTRAINTS TO ACCOMPLISHING THE CRITICAL RESEARCH?

- Restoration timelines and knowledge available not always in sync rather both moving and need to build off eachother
- Stakeholders and general public seem to be driving these efforts more than they should be (based on limited knowledge)
- Math analogy elegant solutions vs. brute force
 - Complexity/dynamic system
- Modern hydrograph in the Columbia
 - Variability over time will require really long-term commitment
- Access to land
- Funding
- Research on metrics of performance